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ABSTRACT The classic theory for the interaction of surface gravity waves and the general ocean circula-
tion entails the so-called wave radiation stress terms in the phase-averaged momentum equation. The
equations of motion are for the combined Eulerian current and Stokes drift. On the other hand, a more
recent approach includes the so-called vortex force term in the momentum equation wherein the only
wave property is Stokes drift. The equations of motion are for the Eulerian current. The idea has gained trac-
tion in the ocean science community, a fact that motivates this paper. A question is: can both theories be
correct? This paper answers the question in the negative and presents arguments in favor of the wave radia-
tion theory. The vortex force approach stems from an interesting mathematical construct, but it does stand
up to physical or mathematical scrutiny as described in this paper. Although not the primary focus of the
paper, some discussion of Langmuir circulation is included since the vortex force was first introduced as the
basis of this oceanic cellular phenomenon. Finaly the paper explains the difference in the derivation of the
radiation stress theory and the vortex force theory: the later theory entails errors related to its use of curl
and reverse-curl [or uncurl] processes.

1. Introduction

To treat the interaction of surface waves with the underlying circulation, a theory was introduced by
Longuet-Higgins and Stewart [1962, 1964, hereinafter L-HS] and extended by [Phillips, 1977, hereinafter
Phillips]. The theory applies to vertically integrated, phase-averaged equations of motion. The prognostic
dependent variable was the combined Eulerian current and Stokes drift which responded to surface forcing
but also to a ‘‘wave radiation stress’’ term in the momentum equation. Papers by Mellor [2003, 2015, herein-
after Mellor] extended the L-HS theory to obtain vertically resolved equations. The combined Eulerian cur-
rent and Stokes drift satisfied the nondivergent continuity equation; separately the current and Stokes drift
are generally divergent.

In pursuit of a theory of Langmuir cells, observed on the ocean surface as long rows of convergent contami-
nants or as ‘‘windrows,’’ Craik and Leibovich [1976, hereinafter CL] developed a theory where stream-wise
vorticity was forced by the curl of a so-called ‘‘vortex force.’’ The theory was extended by McWilliams and
Retrepo [1999, hereinafter MR] wherein the vorticity, when ‘‘uncurled,’’ devolved into a momentum equation
for the Eulerian current alone and which was forced by the vortex force, an element of which was Stokes
drift. The Eulerian current and Stokes drift velocities are separately nondivergent.

Whereas the motivation of CL was to offer a ‘‘rational model of Langmuir circulation,’’ MR applied the theory
to oceanic circulation and, in particular, to determine its effect on large scale circulation. A later paper,
McWilliams et al. [2004], extended MR to account for infragravity waves whose scales are intermediate
between surface wave and current scales; the paper is quite complicated. However, in a subsequent paper
[Uchiyama et al., 2010], the infragravity wave and current scales were combined therefore reverting to the
two scale scheme of MR.

The vortex force term in the momentum equation is a major player in many papers that have appeared in
the last decade or so. Some numerical ocean models incorporate the vortex force term in their algorithms
[Uchiyama et al., 2010, Bennis et al., 2011, Kumar et al., 2012]; it has also played a role in numerical turbu-
lence simulations [McWilliams et al., 1997, Sullivan et al., 2004] and turbulence closure models [Kantha and
Clayson, 2004, Harcourt, 2013].
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If the ‘‘radiation stress’’ and ‘‘vortex force’’ theories are both correct, then one should be able to derive one
from the other, but apparently that cannot be done according to Mellor [2015] who invoked the paper by
Smith [2006a]. This paper is written in support of the L-HS and Mellor theory whereas we show where and
how the theory of MR and papers dependent on the vortex force are incorrect.

1.1. Wave Relations
To represent waves, all of the references cited above use the linear wave relations either directly or indi-
rectly such that wave elevation, velocities and pressure are

~g5a cos w (1)

~ua5kaac
cosh kðz1hÞ

sinh kD
cos w; ~w5kac

sinh kðz1hÞ
sinh kD

sin w (2a, 2b)

~p5kac2 cosh kðz1hÞ
sinh kD

cos w (2c)

where ka is the wave number vector and k5jkaj; a is wave amplitude; c5r=k is phase speed; w � kbxb2x t
and x5r2kbuAb where r is intrinsic frequency and uAb is the Doppler velocity defined in Mellor [2003].
Greek subscripts, a or b, denote horizontal components so that xa5ðx; yÞ are horizontal coordinates and
~ua5ð~ux ; ~uyÞ are horizontal velocity components; the vertical, particle following coordinate is z and the verti-
cal wave velocity is ~w . Repeated subscripts denote summation; e.g., @ub=@xb5@ux=@x1@uy=@y.

There will also be a need for vector nomenclature such that x5ðxa; zÞ5ðx; y; zÞ and ~u5ð~ua; ~wÞ5ð~ux ; ~uy ; ~wÞ.

It is noteworthy that (2) applies to the entire water column, g > z > 2h, where g5ĝ1~g; the mean elevation
is ĝ and ~g is the instantaneous wave elevation. The mean water column depth is D5ĝ1h. Wave amplitude,
wave number and frequency are assumed to vary slowly, spatially relative to k21 and temporally relative to
r21 (Phillips). Waves are taken to be monochromatic from which, it is assumed, spectra can be formed.

It should be understood that the wave energy equation must be added to the mix of equations to supply
wave energy, E5ga2=2, and therefore wave amplitude.

1.2. Phase-Averaging
Throughout this paper, phase-averaging is denoted by an over-bar such that

ð Þ5 1
2p n

ð 2p n

0
ð Þdw (3a)

where n is an integer equal or greater than one. It can also be reckoned by holding x, y and �z 5 const. (z
denotes the vertical location of material surfaces subject to wave motion, �z is the phase-average of z). Thus,

ð Þ5 1
nT

ð nT

0
ð Þdt; (3b)

or holding t and �z5 const. so that

ð Þ5 1
nL

ð nL

0
ð Þdx (3c)

where here x is taken in the direction of wave propagation. T and L are wave period and wave length
respectively.

1.3. Stokes Drift
Phillips and many others determine Stokes drift according to phase-averages of the Lagrangian wave
velocity,

uSa5~ua1~xb
@~ua

@xb
1~z

@~ua

@z
; wS5~w1~xb

@ ~w
@xb

1~z
@ ~w
@z
; (4a, 4b)

where ~xb �
Ð t

0 ~ubðt0Þdt0 and ~z �
Ð t

0 ~wðt0Þdt0. Without a change in nomenclature, let z ! �z in ~ua and ~w of
(2a, 2b) and then insert the result into (4a, 4b) yielding Stokes drift,
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uSa5kaaðkaÞc cosh 2kð�z1hÞ
2sinh 2kD

and wS50 (5a, 5b)

Thus, uS 5ðuSx ; uSy; 0Þ is generally divergent as in Phillips.

1.4. This Paper
Section 2 is a review of the CL and MR theory. At first, I had difficulty grasping all the steps in the CL and MR
analyses; however, their derivation is simplified in section 2 by omitting Coriolis and baroclinic terms; never-
theless the ingredients leading to the vortex force term in the momentum equation are retained. The
review does not substantively change their analysis or final result. An alternative development is presented
in section 3 using the same scaling as in section 2. Section 4 is a brief review of the L-HS theory and its verti-
cally resolved counterpart as most recently set forth by Mellor [2015] which reviewed the L-HS and Phillips
vertically integrated derivation and the Mellor vertically resolved derivation from the same integral continu-
ity and momentum equations.

Reasons for favoring the LH-S and Mellor theory are set forth in section 5. Langmuir circulation is discussed
in sections 6 and 7. It is included because it first motivated the concept of the vortex force. Finally, section 8
explains why the radiation stress theory differs from the vortex force theory. Section 9 is a summary of this
paper’s findings.

2. Review of the CL and MR Theory

To aid comprehension, this review adds some intervening steps to the analysis of CL and MR. Although the
Coriolis and baroclinic terms are omitted, their inclusion in the phase-averaged momentum equation is
straight forward and is the same in CL and MR and Mellor.

Adopting MR nomenclature, the continuity and momentum equations are

r•q50 (6)

and

@q
@t

1q•rq1rp52g1mr2q (7)

or using an established vector identity [Hildebrand, 1976]

@q
@t

5q3ðr3qÞ2r p1q•q=2ð Þ2g1mr2q: (8)

In the above, q is the velocity vector, p is kinematic pressure, g is the gravity vector and m is an eddy
viscosity.

CL and MR establish an ordering scheme such that

q5e uw1e2v; m5e2m0 (9a, 9b)

plus higher order terms. In (9), e � order ðkaÞ and ka is the wave slope. Note that uwðx; tÞ, representing
wave motion, is taken to be a function of space and a fast time variable, t, such that a phase average uw 50
whereas vðx; t; tsÞ is additionally a function of the slow time variable, ts . After inserting (9) into (8), taking
the curl of the result and finally dividing by e2, CL and MR obtain

@x
@t

1e2 @x
@ts

5r3 ðe uw1e2vÞ3x
� �

1e2m0r2x (10)

where r•uw5r3uw50 and x � r3v. In (10), note that q3ðr3uwÞ50 and has been deleted. [Initially,
MR used the small parameters c and d to modify different parts of (10); subsequently they were related to e
which here are incorporated ab initio.] Next, expand

v5v01ev11e2v2 1: : : (11a)
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x5x01ex11e2x2 1: : : (11b)

so that, evidently, x05r3v0 and x15r3v1, etc.

From (10) and (11), an equation of order e0 is

@x 0

@t
50 (12)

and of order e

@x1

@t
5r3 uw3x0

� �
(13)

and of order e2

@x2

@t
1
@x0

@ts
5r3ðv03x0Þ1r3ðuw3x1Þ1m0r2x0: (14)

From (12), x05x0ðx; tsÞ and, also v05v0ðx; tsÞ. A time integral of (13) is

x15r3ðU3x0Þ (15)

where, U �
ð

uwðt0Þdt0 as obtained from (2a, 2b). (U is used here and in Appendix B for different variables.
The context in which they appear should make the distinction clear.) A phase average of (14) is

@x0

@ts
5r3ðv03x0Þ1r3ðuw3x1Þ1m0r2x0: (16)

CL and MR engage in complicated tensor algebra (their Appendix A) to evaluate x1 from (15) and obtain

uw3x1 5uS3x0 (17)

the now well-known vortex force where uS is the Stokes drift. A review of the derivation of (15) and (17) in
this paper’s Appendix B indicates that (17) is missing a vertical component. Nevertheless, continuing with
the MR analysis, (16) can be written

@x0

@ts
5r3ðv03x0Þ1r3 uS3x0

� �
1m0r2x0: (18)

Now ‘‘uncurl’’ (18) to obtain

@v0

@ts
2ðv03x0Þ5uS3x02rU1g1m0r2v0 (19)

where g is any constant vector and U is any scalar function. However, to conform to the conventional
momentum equation, let g5ð0; 0;2gÞ be the gravity constant and now define U5p01ðv0•v0Þ=2 where p0

is phase-averaged pressure. Because v03x052v0•rv01rðv0•v0Þ=2 [Hildebrand, 1976], (19) can be written

@v0

@ts
1v0•rv052rp01g1uS3x01m0r2v0 (20)

This is equation (19) in MR.

A necessary addition to (20) is the continuity equation in the form

r•v050 (21)

which is obtained from (6), (9a) and (11a) to lowest order.

Henceforth, the subscripts, 0, will be removed.

2.1. The Boundary Layer Approximation
Applying the boundary layer approximation (also known as the hydrostatic approximation) to (20) yields
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@va

@ts
1vb

@va

@xb
1vz

@va

@z
52

@p
@xa

1xzðuS
y ;2uS

xÞ1mr2va: (22a)

Since the vertical component of the vortex force is small relative to g,

@p
@z

52g (22b)

so that p5patm1gðĝ2zÞ and @p=@xa5@ðpatm1gĝÞ=@xa for insertion into (22a); patm is the atmospheric pres-
sure and ĝ is the mean surface elevation. Finally, the continuity equation from (21) is

@vb

@xb
1
@vz

@z
50: (23)

Multiply both terms in (23) by va and add to (22a) to obtain the flux form of the momentum equation,

@va

@ts
1
@ðvbvaÞ
@xb

1
@ðvz vaÞ
@z

52
@p
@xa

1xzðuS
y ;2uS

xÞ1mr2va: (24)

The development in this section is an impressive display of mathematical acumen and manipulative skill.
However, I do not think the development is correct. The reasons follow in sections 3, 5 and 7.

3. Alternate Derivation

The ordering scheme adopted by CL and MR is used here except that it is applied directly to the primitive
equations of motion. Now, write again (6)

r•q50; (25)

For later convenience, add qr•q to (7) to obtain the flux form of the momentum equation and obtain

@q
@t

1r• qqð Þ1rp5g1mr2q: (26)

Boundary conditions at z5g are qz5qb@g=@xb1@g=@t and at z52h; qz52qb@h=@xb.

Adding pressure, the ordering scheme as in (9) is repeated

q5euw1e2v; m5e2mo; p5epw1e2pv ; g5egw1e2gv: (27a, 27b, 27c, 27d)

Inserting (27) in (25) and (26) and collecting terms of order e,

r•uw50 (28)

@uw

@t
1rpw5g (29)

where g5ð0; 0;2gÞ. Boundary conditions at z5g; are ww5@gw=@t and at z52h; ww52uw
b @h=@xb.

The order e2 equations are

r•v50 (30)

@v
@t

1r• uw uw
� �

1rpv5mr2v: (31)

At z5g; vz5uw
b @g

w=@xb1@gv and at z52h; vz52vb@h=@xb. The ordering scheme has the nice feature that
(28), (29) – which vanished in section 2 - and boundary conditions immediately deliver the linearly wave sol-
utions, (1) and (2).

Now reassemble the equations by combining the product of e and equation (28) and the product of e2 and
equation (30) to give

r• ~u1ûð Þ50 (32)

where we define ~u5e uw and û � e2v. Similarly add (29) and (31) to give
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@

@t
û1~uð Þ1r• û1~uð Þ û1~uð Þ½ �1r p̂1~pð Þ5g1mr2û (33)

A slight disadvantage of the ordering scheme in (27) is that, in the absence of waves, the conventional
advective terms in (33) are not recovered. Therefore, consistent with (27), we have simply added higher
order terms to (33) by replacing ~u with û1~u in the terms in square brackets. After further development
below and phase-averaging, this will add an error of order e4 relative to retained terms of order e2. By similar
addition, the boundary conditions become at z5g; ŵ1~w5ðûb1~ubÞ@g=@xb1@g=@t and at
z52h; ŵ1~w52ðûb1~ubÞ@h=@xb.

Note that the horizontal and vertical components of uw uw or ~u ~u after phase averaging become part of the
radiation stress term in the following equation.

4. The L-HS and Mellor Theories

Although representation of the viscous term differs, (32) and (33) are the initial equations of L-HS and Mellor
followed by further manipulation and phase-averaging. The L-HS theory, as recorded by Phillips, is obtained
by vertical integration of (32) and (33) while incorporating boundary conditions after which the integrals
are divided into wave portions (mean surface level to crest or trough levels) and the remainder portion and
then phase-averaged. It is a mostly physical argument and, thus differs from the predominantly mathemati-
cal argument of CL and MR. The methodology is reviewed in Mellor [2015] and shown to be related to the
vertically resolved equations of Mellor [2003].

The equations in Mellor [2003] were written in sigma coordinates, but, here, the equations have been trans-
formed to Cartesian coordinates in order to compare with CL and MR; the transformation process is detailed
in Mellor [2005].

In Mellor, properties were expanded about mean surfaces, �z which denotes phase-averaged (resting) mate-
rial surfaces. Then instantaneous material surfaces are denoted by z5�z1~s where the vertical deviation,
~s5a sinh kð�z1hÞ=sinh kD½ �cos w; at �z5ĝ, the material surface elevation is ~s5~g5acos w. Next define
~uDa � ~uaðz5�zÞ, Now see that, to lowest order, the ~ua in (2a) can be written as ~uðz; tÞ5~uDa1ð@~uDa=@�zÞ~s
(The subscript, D, is suggested by the definition, D � ĝ1h, to denote the fact that ĝ > �z > 2h.) Similar
expansions apply to the vertical wave velocity and pressure

The phase-averaged continuity equation is

@Ub

@xb
1
@W
@z

50 (34)

In Appendix A and as an example of the derivation process, the continuity equation is derived in a way
somewhat different from Mellor but nevertheless consistent with that paper.

In Mellor (2a, 2b, 2c) and in Appendix A, the term uSa5@ð~uDa~sÞ=@�z emerges which yields the same result for
uSa as in (5a). Furthermore, uSa appears as an addition to the Eulerian current, ûa, so that Ua � ûa1uSa and
W � ŵ since by the same reckoning wS5~s@ ~w D=@ �z 50.

The phase-averaged momentum equation is

@Ua

@t
1
@UaUb

@xb
1
@WUa

@z
1
@Sab

@xb
1FSa52

@

@xa
ðgĝ1patmÞ1

@

@z
sTa1sPað Þ (35a)

wherein the radiation stress term is

Sab5~uDa~uDb2dab ~w 2
D 1dab

@

@�z
~pD~s 2g~s2=2
� �� 	

: (35b)

The Kronecker delta dab51 if a5b and 50 otherwise. The system is closed after substituting (2) (wherein
z ! �z ) into (35b).

Note that FSa � SabD21ð@D=@xbÞ1 @ĝ=@xb1D21ðz2ĝÞ@D=@xb
� �

@Sab=@z whereas in deep water, FSa ffi 0.
Albeit complicated, FSa is necessary to obtain the simple integral equation of L-HS because
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Ð ĝ
2hð@Sab=@xbÞdz1FSa5 @

Ð ĝ
2h Sabdz

� �
=@xb and also to convert back to sigma coordinates where the term is

also simple.

The boundary conditions are

W5
@ĝ
@t

1Ub
@ĝ
@xb

at z5ĝ and W52Ub
@h
@xb

at z52h (36a, 36b)

Thus, equations (34) and (35a) are much like those without waves except for the addition of the radiation
stress term and the fact that Stokes drift is included in the definition of Ua. In Mellor [2015], it is established
that, whereas, Sab5c2OðkaÞ2 is retained, terms of order (ka)4 are neglected.

In (35a), the terms, sTa and sPa , represent vertical momentum transfer due to turbulence and pressure
respectively; their relative roles are examined in Mellor [2005].

After Ua is determined and after wave properties are known, the Eulerian velocity may be obtained by sim-
ply subtracting Stokes drift obtained from (5a).

5. Critique

Waves at the surface are indeed wavy and material surfaces in the interior are also wavy such that z5�z1~s, a
seemingly trivial statement were it not for the fact that it is intrinsic to the analysis of Mellor but does not
play a role in the analysis of section 2.

5.1. Fundamentals
Reverting to fundamentals, the Eulerian velocity is

û � x̂ðt1TT Þ2x̂ðtÞ
TT

(37a)

whereas Stokes drift is

uS �
~xðt1TPÞ2~xðtÞ

TP
(37b)

where TT is a time scale long relative to the characteristic turbulence scale and TP is one or more wave peri-
ods; both x̂ and ~x are particle locations, but to describe the motion of a particle of fixed identity, we need
the sum of x̂ and ~x. Therefore, set T5TT 5Tp and xp5x̂1~x so that

û1uS �
xpðt1TÞ2xpðtÞ

T
: (37c)

Equation (37c) is simple evidence that the Eulerian current and Stokes drift should be dynamically com-
bined as in (34) and (35a). The equation will be useful in the boundary condition subsection below.

5.2. Continuity
In their Appendix A, MR derive their result that r•uS50. I have tried to repeat the MR derivation in Appen-
dix B, but do not obtain their nondivergent result. The determination in (4) is that wS50 so that, in general,
@uSa=@xa 6¼ 0 and @ûa=@xa1@ŵ=@z 6¼ 0; nevertheless, @ðûb1uSbÞ=@xb1@ŵ=@z50. Furthermore, a mean
horizontal drift for a horizontally propagating wave is conceptually acceptable; a mean vertical drift is not
acceptable. McWilliams et al. [2004] do recognize that wS50, but allow for a vertical ‘‘pseudo-Stokes drift’’
here denoted by wS and defined by integrating @wS=@z52@uS

b=@xb. In view of (5b), I can assign no physical
meaning to wS.

In Phillips and Mellor, it is the combination of Eulerian current and Stokes drift that is nondivergent as in
(34) and as derived in Appendix A.

5.3. Momentum
Temporarily neglecting the expansion of ~ua about a mean state as in section 4, the horizontal component
of the momentum flux in (33) can, after phase-averaging, be written ðûa1~uaÞðûb1~ubÞ5ûaûb1~ua~ub

wherein ~ua~ub5~uDa~uDb [1 terms of order (ka)4] is the first term on the right in (35b). It is similar to a
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turbulent fluctuation term. It is hard to see how a theory of wave-current interaction can avoid this term’s
inclusion in the momentum equation as in (24).

In Appendix B, the vertical component of the vector equality in (17) is shown to contain an error such that
the vertical component of the vortex force in (19) to (21) also contains an error. However, due to the bound-
ary layer approximation, the vertical component is negligibly small in (24).

5.4. Pressure
L-HS, Phillips and Mellor find that waves introduce a significant term in the pressure relation; such that �p5

patm1gðĝ2�zÞ2~w 2
D and @�p=@xa5@ðpatm1gĝÞ=@xa2@ ~w 2

D=@xa. The addition of ~w 2
D is not subtle; it is found in

either of two ways: integrate the vertical component of the differential momentum equation from the free
surface to an underlying surface [Mellor, 2015] or apply the integral momentum equation to a control vol-
ume that envelopes the free surface and an underlying surface [Mellor, 2011]. Thus, ~w 2

D joins ~uDa~uDb and is
the second term on the right in (35b). As shown in section 8, the ratio of the term, xzðuSy;2uSxÞ in (24) to @

~uDa~uDb2dab ~w 2
D

� �
=@xa in (35b) is of order ðkaÞ2 and can be neglected.

Pressure also contributes the last term in (35b) as derived in Mellor.

5.5. Boundary conditions
If (23) is integrated from z52h to z5ĝ, one obtains

@

@xb

ðĝ

2h
vbdz2vbðĝÞ

@ĝ
@xb

2vbð2hÞ @h
@xb

1wðĝÞ2wð2hÞ50: (38)

The boundary conditions cited in MR are

at z5ĝ; w5r•MS and at z52h; w52v•rh (39a)

where MS
a5

ðĝ

2h
uS

adz. Equations (39a) and (39b) are incorrect as indicated below. Inserting into (38) gives

@

@xb

ðĝ

2h
vbdz1

@MS
b

@xb
2vb

@ĝ
@xb

50 :

Of course, this result is incorrect. However, in a later applications paper by Uchiyama et al. [2010], (39a) is
amended such that

w5r•MS1
@g
@t

1v•rg at z5ĝ (39b)

which, to this writer, seems hard to justify. However, then the integrated continuity equation becomes

@

@xb

ðĝ

2h
vb1uS

b

� �
dz1

@ĝ
@t

50 (40)

With a change in nomenclature and using (36), (40) may be properly obtained from (34) after vertical inte-
gration. Whereas (40) is correct (39a’) is, as shown next, incorrect.

Refer again to (37c). Thus, at the bottom, z52h, xpðt1TÞ5xpðtÞ1iDxp1jDyp2mDhp where i, j, m are unit
vectors in the x, y, z directions. From (37c), ûa1uSa5Dxpa=T and ŵ52Dhp=T (since we insist that wS50).
Therefore, at z52h, ŵ52ðûa1uSaÞ@h=@xa after letting Dhp=Dxpa ! @h=@xa as in (36b); thus, (39b) cannot
be correct. The same reasoning can be applied at the surface to show that ŵ2@ĝ=@t5ðua1uSaÞ@ĝ=@xa at
z5ĝ so that (39a) or (39a’) is incorrect.

5.6. Energy
Starting from (33) the wave energy equation can be derived as in Phillips where velocities are assumed to
be vertically constant and Mellor [2003] for vertically resolved velocities. It is

@E
@t

1
@

@xa
ðcga1ûAaÞE
� �

1

ðĝ

2h
Sab

@Ua

@xb
dz5Sin2Sdis (41)

where cga is the group velocity, ûAa is an advective velocity and Sin and Sdis are wind source and wave dissi-
pation terms. I see no way that the energy equation can be obtained from the vortex force formulation of
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section 2. Furthermore, in Mellor [2005] the mean energy (U2
a=2) equation is derived from (35a) wherein the

term
Ð ĝ
2h Sabð@Ua=@xbÞdz also appears as a source/sink term and is transported to the same term in (41) as a

sink/source term. This portion of a complete energy balance [Mellor, 2005] is missing in the vortex force for-
mulation rendering an energy balance unachievable.

6. Langmuir Circulation

CL seek a stationary solution to (18) which produces vorticity in the stream direction and the cellular charac-
teristic of Langmuir circulation (henceforth LC). Recall that the subscripts, 0 have been deleted; then let

r3 uS3x
� �

5x•ruS2uS•rx

and for the curl of the vortex force

r3 uS3x
� �

5x•ruS2uS•rx

which, however, assumes the contentious r•uS50! Nevertheless, inserting these expressions into (18)
yields

mr2x5ðv1uSÞ•rx2x•rðv1uSÞ (42)

which is then written in a coordinate system (x,y,z) where x is aligned with uS5ðuSx ; 0; 0Þ and, since a char-
acteristic of LC’s is that the cells are long in one direction, all property variations in the x-direction are
assumed to be nil. Thus,

mr2xx1xy
@uS

x

@y
1xz

@uS
x

@z
5vy

@x0x

@y
1vz

@x0x

@z
(43)

The system (43) is forced by uS
x , but, in order to obtain cell structure with periodicity in the y-direction, CL

posit two intersecting waves with equal amplitude where one wave progressives in the direction ðkx ; kyÞ
and the other in the direction ðkx ;2kyÞ where here ky is a positive number. The potential function of such a
wave field is

u5u11u25acekz cos ðkx x1ky y2rtÞ1cos ðkx x2ky y2rtÞ
� �

52acekz cos ðwxÞcos ðky yÞ
� �

; w � kx x2rt
(44)

from which

½~u; ~v ; ~w �52acekz 2kx sin wx cos ky ~y
� �

; 2ky cos wxsin ky ~y
� �

; kcos wxcos ky ~y
� �� �

: (45)

The associated Stokes drift from (4a) using (45) and requiring considerable manipulation is

uS
x52ðkaÞ2ce2kz 11ðkx=kÞ2cos 2ky y

� �h i
(46)

thereby obtaining the requisite periodicity in the y-direction. After extensive analysis, CL do indeed obtain
xx from (43) with y-periodicity. Thereafter, xx5r2w(y, z) and with proper boundary conditions on w(y, z),
cell structure normal to the x-direction is obtained.

A simpler formulation is obtained by assuming that perturbations of vy and vz are small relative to the y-
average of vx , call it UðzÞ, so that xy5 @U=@z and (37c) becomes mr4w52 @U=@zð Þ @uS

x=@y
� �

and the right
side is known.

7. Critique

The above LC theory in (42)and (43) depends on separate continuity equations, r•uS50 and r•v50 and
the vortex force term in the vorticity or momentum equation. Therefore, for this reason (37c) and reasons
stated in section 5, this LC theory is deemed to be incorrect.

Another direct approach is to refer back to (8) wherein one can obtain

r3ðq3xÞ1mr2x50

or
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x•rq2q•rx1mr2x50

where x � r3q. For the x-component of vorticity and assuming all properties do not vary in the x-direc-
tion as in section 6, one finds that the first term on the left disappears so that

q•rxx2mr2xx50

In other words, the system only decays and cannot produce cells. If q5iqx , the solution is trivial. Cells can
be produced by adding buoyancy gradients or curvature terms [Taylor, 1923; Gortler, 1954] or other body
force terms.

Since the discovery of cellular phenomena in the ocean by Langmuir [1938], various attempts have been
made to provide an underlying theory. For example, Garrett [1976] described a feedback mechanism
whereby a disturbance or nascent jet in the x-component of velocity is amplified. Wave theory does dictate
that waves encountering the jet will amplify and therefore might break and create additional Eulerian cur-
rent. However, Craik [1977] states that ‘‘several aspects of his analysis are unacceptable’’ and proceeds to
alternative analyses based on the vortex force as does Leibovich [1980].

I offer a suggestion: theory and experiment show that flow on concave walls can form cells in laminar flow
and in turbulent flow [So and Mellor, 1976]. Waves have curvature, but the curvature alternates between
convex stabilizing flow and concave destabilizing cellular flow. Does the concave portion dominate? Until
more experimental or theoretical foundation is provided, the suggestion remains only one of many.

8. Why do the Two Formulations Differ?

The derivation of CL and MR in section 2 begins with the curl of (8) whereby the gradient of pressure and
all of (29) drop out of contention. Upon uncurling, rU where U is any scalar, appears but the portion of
rU5rðuw •uw=2Þ5r•ðuw uwÞ, as in the wave portion of rðq•q=2Þ in (8), is not reinstated. Adding (29) and
r•ðuw uwÞ to (19) comes close to (33) in section 3. However, the vortex force term does not appear in (33).
The vortex term is somehow buried in the complexity of section 2 and its dependent appendix B. Contrast
this with the relative simplicity of section 3.

It is concluded that the vortex term does not exist. However, if one assumes that it does exist, it is possible
to gage the contribution of uS3x0 or xzðuSy ;2uSxÞ. Suppose the term were simply added to (35a). The vor-
tex force term is of the order ðû=LÞuS where L is the length scale of mean spatial variations. Next û is of
order uS 5 order cðkaÞ2 [in fact, in some cases there is evidence that they very nearly cancel [Ursell, 1950,
Monismith et al., 2007, Smith, 2006b] so that the vortex force term is of order c2ðkaÞ4=L. However, quadratic
terms in (35a, b) are order c2ðkaÞ2=L. Thus, the ratio of the vortex force to the wave radiation stress term is
of order ðkaÞ2 (� 1022) so that the vortex force term can be discarded.

9. Summary Discussion

This paper contrasts the vertically resolved equations of CL and MR with that of Mellor which, upon vertical
integration, agree with the equations of L-HS, Phillips and Smith [2006a].

The continuity equation derived by MR involving only the Eulerian current disagrees with the results of L-
HS, Phillips, Mellor and the simple derivation in Appendix A where the combined current and Stokes drift is
required for volume conservation (or mass conservation after insertion of constant density).

The surface boundary conditions of MR and amended in Uchiyama et al. [2010] includes a strange term in
(39a’) but otherwise involves only the current as does the bottom boundary condition. Instead, direct
recourse to equation requires the combination of current and Stokes drift. In this paper and those of L-HS,
Phillips and Mellor, it is recognized that the vertical component of Stokes drift is nil and avoids introduction
of a vertical ‘‘pseudo Stokes drift.’’

The MR version of the momentum equation is a prognostic equation for the current alone. It also substi-
tutes the vortex force term in place of the wave radiation stress term and therefore neglects quadratic wave
momentum; the latter is elementary according to the reasoning of L-HS, Phillips and Mellor.

Although the reasoning is slightly more complex, pressure is maltreated by MR according to this paper.
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It is shown that the vortex force formulation is incompatible with the established wave energy equation.

The papers by L-HS, Phillips and Mellor consider the flow field as a simple combination of currents and waves.
The difference in the CL and MR results is due to the fact that terms drop out after taking the curl of the basic
primitive equations; the terms are not restored when the ‘‘uncurl’’ process is undertaken as discussed in section
8. Alternately, the scaling of CL and MR in (9) or (27) also reproduces the initial equations of L-HS, Phillips and
Mellor when applied directly to the primitive equations of motion in which case the vortex force term does not
appear. Even if were assumed that the vortex force term did exist, the quadratic terms are considerably larger
than the vortex force term which is of an order that is generally neglected in most wave theories.

Appendix A: The Continuity Equation

The continuity equation can be derived by considering the flow on the faces of an elemental control vol-
ume DxDyDz where Dz5D�z 11@~s=@�zð Þ such that

dx ûx1~uDx1
@~uDx

@�z
~s


 �
11

@~s
@�z


 �
D�z

" #
Dy1dy ûy1~uDy1

@~uDy

@�z
~s


 �
11

@~s
@�z


 �
D�z

" #
Dx

1dz ŵ1~w D1
@ ~w D

@�z
~s


 �" #
DxDy50

where dx f 5f ðx1DxÞ2f ðxÞ and similar expressions apply to dy and dz .Working out the phase-averaging and
noting that ~w D1ð@ ~w D=@�zÞ~s50, one obtains

dx ûx1
@ðuDx~s Þ
@�z

" #
D�zDy1dy ûy1

@ðuDy~sÞ
@�z

" #
D�zDx1dzðŵÞDxDy50

Now divide by DxDyD�z and let dxð Þ=Dx ! @ð Þ=@x, etc. and obtain

@

@xb
ûb1

@ðuDb~sÞ
@�z

 !
1
@ŵ
@�z

50

Using (2), it can be shown that uSb5@ð~uDb~sÞ=@�z so that (34) is obtained after recalling the definitions, Ub

� ûb1uSb and W � ŵ .

Derivation of the momentum equation is similar but more complicated for which reference is made to
Mellor [2015].

Appendix B: Review and Critique of a Nondivergence Stokes Drift

The following discussion will be restricted to deep water. In their Appendix A, MR purport to show that
r•uS50, or

@

@xm
Uj
@uw

m

@xj


 �
50 (B1)

where we used indices, i, j, m (reserving k for wave number). Recalling that Ui5
Ð

uw
i dt , MR write

@

@t
@

@xm
Uj
@Um

@xj


 �� 	
5

@

@xm
uw

j
@Um

@xj
1Uj

@uw
m

@xj


 �
5

@

@xm
uw

j
@Um

@xj
1Uj

@uw
m

@xj


 �
: (B2)

The left side is nil [which, in MR, appears to have an indexing error but is corrected here as suggested by
(B1) and as necessary to match the right side of (B2)]. Since

uw
i 5acekzðkx cos w; ky cos w; ksin wÞ

one obtains

Ui5ak21ekzð2kx sin w;2kysin w; kcos wÞ:

Working out the algebra, it is then found that
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uw
j
@Um

@xj
5ka2ce2kzð2kx ;2ky; 0Þ and Uj

@uw
m

@xj
5ka2ce2kzð1kx ;1ky ; 0Þ: (B3)

Inserting into (B2), one obtains 0 5 0, a sensible result but a result that does not support the MR assertion of
(B1).

However, as noted in section 4, a later paper by McWilliams et al. [2004] agrees that wS50 but introduces a
vertical ‘‘pseudo-Stokes drift’’ which is here labeled wS and obtained from wS52@

Ð z
2h uS

bdz0
� �

=@xb.

B1. Derivation of Equation (17)
A key step in section 3 is equation (17). First, to determine x1 appeal to a standard identity [Hildebrand,
1976] and write (15) as

x15r3ðU3x0Þ5x0•rU2U•rx01Uðr•x0Þ2x0ðr•UÞ:

Now the divergences of U and x0 are nil. Furthermore, the ratio of the second term on the right relative to
the first term is of order ðkLÞ21 where L is the spatial scale of x0 and so the second term can be neglected.
Thus,

x15x0•rU: (B4)

Working out the vector algebra, it is found that

x15ak21ekz

i cos w 2k2
x x0x2kx kyx0y

� �
2sin wðkkxx0zÞ

h i
1j cos w 2k2

y x0y2kx kyx0x

� �
2sin wðkkyx0zÞ

h i
1m cos w k2x0z

� �
2sin w kkxx0x1kkyx0y

� �h i

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

(B5)

where i; j;m are unit vectors in the x, y, z directions. Since

uw5acekz ikx cos w1jkycos w1mksin w
� �

: (B6)

one obtains

uw3x1 5ka2ce2kz iðkyx0zÞ2jðkxx0zÞ
� �

(B7)

where many terms are nil since sin w cos w50. It is noteworthy that the vertical component is nil. On the
other hand

uS5ka2ce2kz ikx1jky
� �

1mwS:

However, as defined above, wS is order ðkLÞ21 relative to the other stokes drift components and can be
neglected. Since x05ix0x1jx0y1mx0z one obtains

uS3x05ka2ce2kz iðkyx0zÞ2jðkxx0zÞ1mðkxx0y2kyx0xÞ
� �

: (B8)

Comparing (B7) and (B8), we find that

uw3x1 5uS3x02mka2ce2kzðkxx0y2kyx0xÞ (B9)

Agreement is obtained with (17) only if the vertical component of (B8) or (B9) is ignored.
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Erratum
In the originally published version of this article, equations 35b, 37c, and both 39 a and b were labeled incorrectly. These instances have

since been corrected. This version may be considered the authoritative version of record.
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